District Energy for UC Davis Primate Research Center

October 23, 2019

Joseph Yonkoski, P.E. - Associate Engineer, UC Davis Quindi Guiseppe, P.E. - Associate Partner, Syska Hennessy Group

UCDAVIS

FACILITIES

California National Primate Research Center

UCDAVIS FACILITIES

District Energy System Condition

UCDAVIS

FACILITIES

<u>"New" Chiller and Tower</u> Repurposed from campus

Steam Piping Needs renewal within 10 yrs

Project Objectives

- Renewal of energy infrastructure
- Improve redundancy
- Align energy supply with UC initiatives
- Improve efficiency
- Reduce operating costs
 - Eliminate need for 24/7 boiler watch

UNIVERSITY Carbon Neutrality OF CALIFORNIA Initiative

UCDAVIS | FACILITIES

Nearby Energy Supply

- Biogas sources within 1 mile, existing pipeline
- Significant surrounding land area
 - Geothermal, solar thermal, solar PV
- Donated solar thermal panels

GROUP

UCDAVI

Leverage Available Funding Programs

Cal Solar Initiative (PG&E Incentive)

- \$10/therm rebate to offset gas
- 2 year performance period

FACILITIES

UCDAV

Solar thermal panels donated to UC Davis

CNPRC Background and Project Objectives

- Existing campus has very high energy utilization
 - Most spaces served are 100% Outside Air labs & animal holding
 - High process loads from cage washing activities and sterilization
 - Aging high pressure steam infrastructure
 - Piecemeal modular building construction in many cases
 - Minimal infrastructure investment over last 20 years.
- Project Goals
 - Convert comfort heating from steam to hot water.
 - Eliminate 24/7 boiler attendance

CILITIES

- To the greatest extent technically feasible, utilize donated solar thermal collectors.
- Serve remaining process loads with minimal to no Scope 1 carbon emissions

CNPRC Energy Improvements & CHCP

- Electric process steam boilers
- 135 °F Industrial HW
- 195 °F Industrial HW
- Convert 1 cage washer to Hot Water operation

HHW Distribution Piping:-

- Direct buried PEX construction
- Primarily a manifold & "home run" configuration limiting field joints and valve boxes

Solar Thermal Collector Field:

- Approximately 300 total panels
- Faces due south for maximum annual production

Main Lab/Animal Building:

- Demo existing steam plant
- Steam to HW conversion
- Convert 2 cage washers to hot water operation
- New indirect heater for DHW

CCM Lab Building:

- Electric process steam boilers
- Remove existing heating HW boiler

New CHCP Building:

- Electric chillers
- HHW Boilers NG, Biogas, Propane
- Water source solar thermal heat pumps
- 25,000 MBtu HW Thermal Energy Storage Tank

Quarantine Building:

- Steam to HW conversion
- New Indirect heater for

SYSKA HENNESSY

New Central Heating and Cooling Plant (CHCP)

- New 3,250 Sq. Ft. Building Housing:
 - Two 550 Ton Electric Chillers (blue)
 - Three 3,980 MBH Flexible Watertube Boilers (yellow)
 - Four 93 kW electric high-pressure steam boilers (red)
 - Four 680 MBH Water Source Heat Pumps for solar thermal system (green)
- Estimated 47% of annual heating load satisfied by solar thermal + heat pump output.
- Modular expandable system with potential geothermal and HR chiller integration.
- Need for 24/7 boiler attendance eliminated.

TIES

Solar Thermal Heat Pump System

- Solar Thermal Collector Conversion Efficiency Depends on Several Factors:
 - ISO Efficiency = 0.736-0.68438(P/G) 0.00132(P²/G)
 - P=Entering Water Temp (Deg. F.) Ambient Temp (Deg. F)
 - G = Global Radiation
 - By passing through heat pump, collector entering water temperature can be controlled

Collector Efficiency

GROUP

Underground HW Distribution System

- PEX Flexible Piping System
 - Magnitude of CNPRC heating loads allows relatively small pipe sizes of 6" and smaller.
 - PEX piping available pre-insulated (up to 4") and field insulated in larger sizes.
 - Flexibility to route around existing utilities rather than relocate.
 - Manifold & home-run design eliminates most field joints, tees, and valve boxes.
 - Valve boxes only for future system expansion.

Summary

- CNPRC district energy system needed substantial improvements:
 - Redundancy, reliability, sustainability, efficiency
- Multi-faceted solution to satisfy diverse district needs
 - Integrated solar, heat pump, and HW TES
 - Biogas-ready
 - Electrical steam and high-temp HW production
- Load sizes and site layout suitable for PEX
- Alignment with UC initiatives
 - Significant carbon reduction
 - Designed to fully electrify in the future

UCDAVIS | FACILITIES

Questions?

Thank You!

Joseph Yonkoski, UC Davis, <u>jkyonkoski@ucdavis.edu</u> Quindi Guiseppe, Syska Hennessy Group, <u>gguiseppe@syska.com</u>

